
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 304 (2007) 957–968

www.elsevier.com/locate/jsvi
Short Communication

Nonlinear dynamic behaviors of clamped laminated shallow
shells with one-to-one internal resonance

Akira Abea,�, Yukinori Kobayashib, Gen Yamadac

aDepartment of Information System Engineering, Asahikawa National College of Technology, 2-2-1-6 Syunkodai,

Asahikawa, Hokkaido 071-8142, Japan
bGraduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan

cComprehensive Education Center, Hokkaido Institute of Technology, Sapporo 006-8585, Japan

Received 6 April 2006; received in revised form 1 August 2006; accepted 3 March 2007

Available online 24 April 2007
Abstract

This paper investigates one-to-one internal resonance of laminated shallow shells with rigidly clamped edges. It is

assumed that the natural frequencies o2 and o3 of two asymmetric (second and third) vibration modes have the

relationship o2Eo3. The displacements are expressed by using eigenvectors for linear vibration modes calculated by the

Ritz method. Applying Galerkin’s procedure to the equation of motion, nonlinear differential equations are derived. By

considering the first vibration mode in addition to the two asymmetric vibration modes, quadratic nonlinear terms

expressing the interaction between the asymmetric and the first modes appear in the differential equations. Shooting

method is used to obtain the steady-state response when the driving frequency O is near o2. The dynamic characteristics of

the shells with the internal resonance are discussed.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

When thin structures are subjected to dynamic loads and vibrate with finite amplitudes which are the order
of their thickness, nonlinear responses such as superharmonic, subharmonic, internal and combination
resonances may occur. Since they cannot be predicted by linear models, nonlinear models taking into account
geometric nonlinearities are essential for accurate prediction of those behaviors. Therefore, many researchers
have applied geometric nonlinear theories and studied nonlinear dynamic characteristics of plates and shells
which are basic components of structures. Furthermore, it has become important to understand nonlinear
vibrations of composite materials, which have been widely used as structural members due to their excellent
mechanical properties, as well as isotropic ones.

Chia [1,2] and Sathyamoorthy [3] have conducted a comprehensive review of the literature dealing with
nonlinear problem in plates. There are also exhaustive literature reviews on nonlinear vibrations of shell-type
structures due to Moussaoui and Benamar [4] and Amabili and Paı̈doussis [5]. As for studies on the internal
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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resonance, which is one of typical nonlinear dynamics behaviors, of composite plates and shells, Hadian et al.
[6] used the averaged Lagrangian and investigated two-to-one internal resonances of antisymmetric cross-ply
laminated rectangular plates. Chaotic responses of a parametrically excited cross-ply laminated plate with a
one-to-one internal resonance were examined by Ye et al. [7,8]. The present authors [9–11] analyzed multi-
mode responses of simply supported laminated plates by applying Galerkin’s procedure and the method of
multiple scales (MMS), in which new detuning parameter was introduced to use the MMS properly. Primary
resonances of antisymmetric mode for simply supported cross-ply laminated shells with the one-to-one
internal resonance were investigated by the present authors [12], who reported that the addition of the
fundamental vibration mode to the displacement functions overcame the shortcomings of the Galerkin
discretization e.g. [13] for asymmetric vibration modes of continuous systems with quadratic and cubic
nonlinearities.

This paper analyzes nonlinear dynamic responses of clamped laminated shallow shells with the internal
resonance of o2Eo3, where o2 and o3 are natural frequencies of two asymmetric (second and third) vibration
modes, by using the combination of Galerkin’s procedure and the shooting method. First, we deal with the
linear vibration problem of the shells, and calculate the eigenfunctions by the Ritz method. In the nonlinear
vibration analysis, displacements of the shells are approximated by using the eigenfunctions of the first
symmetric vibration mode in addition to ones of the two asymmetric vibration modes, and then the Galerkin
discretization approach yields nonlinear ordinary differential equations. Finally, we apply the shooting
method to the equations and obtain the frequency–response curves of the shells when a driving frequency O is
near o2. In numerical examples, we treat with antisymmetric angle-ply shells and an isotropic shell, and show
the nonlinear dynamic characteristics in the form of diagrams.

2. Equation of motion for a laminated shallow shell

We consider a laminated shallow shell of rectangular planform, which is composed of N orthotropic layers
of uniform thickness, with lengths a and b, thickness h and radii of curvature Rx and Ry, as shown in Fig. 1.
The coordinate system (x, y, z) is taken in the midsurface of the shell. The principal directions of elasticity are
denoted by L and T, and yk is the angle between L and x axes in the kth layer. The components of the
displacement at an arbitrary point of the shell in the x, y and z directions are u, v and w, respectively.
z

T
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x

Ry Rx
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Fig. 1. Geometry of a laminated shallow shell and coordinate systems.
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According to the first-order shear deformation theory, the in-plane displacements u and v are linear
functions of the coordinate z, and the transverse displacement w is constant throughout the thickness of the
shell. Under this assumption the displacement field may be given in the following form:

u ¼ u0 þ zcx; v ¼ v0 þ zcy; w ¼ w0, (1)

where u0, v0 and w0 are the displacements at the midsurface, cx and cy are the rotations of the midsurface
about the y and x axes, respectively. The nonlinear strain–displacement relations of the shallow shell can be
written as

�x ¼ �
0
x þ zkx; �y ¼ �

0
y þ zky; �z ¼ 0; �xy ¼ �

0
xy þ zkxy; �xz ¼ w0;x �

u0

Rx

þ cx; �yz ¼ w0;y �
v0

Ry

þ cy,

(2)

in which

�0x ¼ u0;x þ
w0

Rx

þ
w2
0;x

2
; �0y ¼ v0;y þ

w0

Ry

þ
w2
0;y

2
; �0xy ¼ u0;y þ v0;x þ w0;xw0;y, (3)

kx ¼ cx;x; ky ¼ cy;y; kxy ¼ cx;y þ cy;x, (4)

and the subscripts following a comma stand for partial differentiation.
The stress, moment and shear stress resultants of the composite shallow shell can be expressed

as follows:
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The elements Aij, Bij, Dij and Sij in the above equations are given by

sx

sy

syz
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sxy
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, (7)

ðAij ;Bij ;DijÞ ¼
XN

k¼1

Z hk

hk�1

C
ðkÞ
ij ð1; z; z

2Þdz; i; j ¼ 1; 2; 6, (8)

Sij ¼ K2Aij ¼ K2
XN

k¼1

Z hk

hk�1

C
ðkÞ
ij dz; i; j ¼ 4; 5, (9)

where the stiffness matrix elements Cij
(k) express the stress–strain relation in the kth layer, K2 is the shear

correction factor and hk is the distance from the midsurface to the upper surface of the kth layer.
Considering the kinetic energy, the strain energy and the work done by an external pressure q(x,y,t)

acting in the z direction, using Hamilton’s principle, and then the equations of motion are derived in
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non-dimensional form as [14]

U ;tt � N̄x;x � aN̄xZ;Z �
Q̄x

2rx

¼ 0, (10)

V ;tt � N̄xZ;x � aN̄Z;Z �
Q̄Z

2ry

¼ 0, (11)

W ;tt þ
N̄x

2rx

þ
N̄Z

2ry

� ðQ̄x;x þ aQ̄Z;ZÞ � 2HðN̄xW ;x þ aN̄xZW ;ZÞ;x � 2HaðN̄xZW ;x þ aN̄ZW ;ZÞ;Z � q� ¼ 0, (12)

cx;tt

12
� M̄x;x � aM̄xZ;Z �

Q̄x

2H
¼ 0, (13)

cy;tt

12
� M̄xZ;x � aM̄Z;Z �

Q̄Z

2H
¼ 0. (14)

In the above equations, N̄, M̄ and Q̄ are the non-dimensional stress, moment and shear stress resultants,
respectively. Other non-dimensional parameters are defined as
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2x

a
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2y

b
; U ¼
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h
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h
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ffiffiffiffiffiffi
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s
t, ð15Þ

with

D0 ¼
ET h3

12ð1� nLTnTLÞ
.

3. Free vibration analysis

In this section, we treat linear strain–displacement relations and obtain linear eigenfunctions of clamped
laminated shallow shells.

In the linear vibration analysis, the maximum kinetic and strain energies of the shell are given as

Tmax ¼
D0H2l2

8a
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respectively, where

f�̄lg ¼ f�̄xl ; �̄Zl ; �̄xZlg
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and l is the non-dimensional natural frequency, which is related to the natural frequency l̄ by
l ¼ l̄a2ðrh=D0Þ

1=2. We consider that the shell is clamped along its four edges, and the boundary conditions
are written as follows:

U ¼ V ¼W ¼ cx ¼ cy ¼ 0 at x ¼ �1 and Z ¼ �1. (19)

The displacements of the shell satisfying the boundary conditions (19) are expressed to be of the form [15,16]

U ¼
XI

i¼1

XJ

j¼1

aijfiðxÞfjðZÞ; V ¼
XI

i¼1

XJ

j¼1

bijfiðxÞfjðZÞ; W ¼
XI

i¼1

XJ

j¼1

cijfiðxÞfjðZÞ,

cx ¼
XI

i¼1

XJ

j¼1

dijfiðxÞfjðZÞ; cy ¼
XI

i¼1

XJ

j¼1

eijfiðxÞfjðZÞ; fiðxÞ ¼ xi�1
ð1� x2Þ; fjðZÞ ¼ Zi�1ð1� Z2Þ, ð20Þ

where aij, bij, cij, dij and eij are unknown coefficients. By substituting the equations, which are obtained by the
substitution of Eq. (20) into Eqs. (16) and (17), into the conditions for a stationary value of the Lagrange
functional La ¼ Tmax �Umax,

qLa

qaij

¼
qLa

qbij

¼
qLa

qcij

¼
qLa

qdij

¼
qLa

qeij

¼ 0 (21)

a frequency equation is derived. These unknown coefficients are obtained as the eigenfunctions by solving the
eigenvalue problem.
4. Forced vibration analysis

In the present paper, we consider an internal resonance when natural frequencies o2 and o3 of two
asymmetric (second and third) vibration modes have the relationship o2Eo3. On the same problem of flat
plates, the displacements are approximated by using the linear eigenfunction of the two vibration modes,
and then the governing equations are discretized by using Galerkin’s procedure e.g. [10]. However, in
nonlinear vibration analyses for asymmetric modes of shells, it was reported that displacements should be
approximated by using a fundamental vibration (first symmetric vibration) mode in addition to the
asymmetric modes in order to capture properly the nonlinear dynamics through Galerkin’s procedure [12,14].
Thus, the displacements of the shell can be expressed using the eigenfunctions of the first symmetric
vibration mode in addition to ones of the two asymmetric vibration modes, which are calculated by the Ritz
method, as

U ¼
XI

i¼1

XJ

j¼1

U1ðtÞa
ð1Þ
ij þU2ðtÞa

ð2Þ
ij þU3ðtÞa

ð3Þ
ij

� �
fiðxÞfjðZÞ,

V ¼
XI

i¼1

XJ

j¼1

V 1ðtÞb
ð1Þ
ij þ V2ðtÞb

ð2Þ
ij þ V 3ðtÞb

ð3Þ
ij

� �
fiðxÞfjðZÞ;

W ¼
XI

i¼1

XJ

j¼1

W 1ðtÞc
ð1Þ
ij þW 2ðtÞc

ð2Þ
ij þW 3ðtÞc

ð3Þ
ij

� �
fiðxÞfjðZÞ,

cx ¼
XI

i¼1

XJ

j¼1

X 1ðtÞd
ð1Þ
ij þ X 2ðtÞd

ð2Þ
ij þ X 3ðtÞd

ð3Þ
ij

� �
fiðxÞfjðZÞ,

cy ¼
XI

i¼1

XJ

j¼1

Y 1ðtÞe
ð1Þ
ij þ Y 2ðtÞe

ð2Þ
ij þ Y 3ðtÞe

ð3Þ
ij

� �
fiðxÞfjðZÞ, ð22Þ
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in which time functions U(t), V(t), W(t), X(t) and Y(t) with subscripts 1, 2 and 3 are amplitudes of the first,
second and third modes, respectively. In a similar way, coefficients aij, bij, cij, dij and eij with superscripts (1), (2)
and (3) stand for eigenvectors of the first, second and third modes, respectively.

We assume that only the second vibration mode is directly excited by the harmonic load, and its distribution
is defined as

q� ¼ F
XI

i¼1

XJ

j¼1

c
ð2Þ
ij fiðxÞfjðZÞ cosOt, (23)

where F and O are the non-dimensional amplitude and angular frequency of the load, respectively. By
substituting Eqs. (22) and (23) into the equations of motion (10)–(14) and applying Galerkin’s procedure,

Z 1

�1

Z 1

�1

FU

XI

i¼1

XJ

j¼1

a
ðlÞ
ij fiðxÞfjðZÞdxdZ ¼ 0;

Z 1

�1

Z 1

�1

FV

XI

i¼1

XJ

j¼1

b
ðlÞ
ij fiðxÞfjðZÞdxdZ ¼ 0;

Z 1

�1

Z 1

�1

FW

XI

i¼1

XJ

j¼1

c
ðlÞ
ij fiðxÞfjðZÞdxdZ ¼ 0;

Z 1

�1

Z 1

�1

F X

XI

i¼1

XJ

j¼1

d
ðlÞ
ij fiðxÞfjðZÞdxdZ ¼ 0;

Z 1

�1

Z 1

�1

FY

XI

i¼1

XJ

j¼1

e
ðlÞ
ij fiðxÞfjðZÞdxdZ ¼ 0; ðl ¼ 1; 2; 3Þ ð24Þ

and then 15 sets of simultaneous nonlinear differential equations are derived. In the above equations, we
define FU, FV, FW, FX and FY as the equations obtained by substituting Eqs. (22) and (23) into the equations of
motion (10), (11), (12), (13) and (14), respectively. If in-plane and rotatory inertias in these equations are
neglected, three sets of ordinary differential equations in terms of the transverse displacements W1, W2 and W3

are derived by eliminating Ui, Vi, Xi and Yi and adding on the effect of viscous damping:

W 1;tt þ mo1W 1;t þ o2
1W 1 þ G1W 2

1 þ G2W
2
2 þ G3W

2
3 þ G4W

3
1 þ G5W 1W

2
2 þ G6W 1W 2

3 ¼ 0,

W 2;tt þ mo2W 2;t þ o2
2W 2 þ G7W 1W 2 þ G8W

2
1W 2 þ G9W

3
2 þ G10W 2W

2
3 ¼ F cosOt,

W 3;tt þ mo3W 3;t þ o2
3W 3 þ G11W 1W 3 þ G12W 2

1W 3 þ G13W 2
2W 3 þ G14W 3

3 ¼ 0, ð25Þ

where oi and Gi are the non-dimensional natural frequencies and coefficients of the nonlinear terms,
respectively. They are calculated numerically by the use of the software package Mathematica [17]. The terms
moiW i;t indicate the modal damping and m is the non-dimensional damping ratio. The difference between two
natural frequencies l in Eq. (16) and o in Eq. (25) is that the former is obtained by considering the effects of
in-plane and rotatory inertias (the Ritz method), whereas the latter is done by neglecting the effects (Galerkin’s
procedure). The terms moiW i;t are additional modal damping. In the above equation, by considering the effect
of the first vibration mode W1, the quadratic nonlinear terms G7W1W2 and G11W1W3 appear in the equation
expressing the asymmetric modes. For example, when W2 is excited, W1 is always activated by the nonlinear
G2W

2
2, and then W1 affects W2 through the nonlinear terms G7W1W2 and G8W

2
1W 2 (i.e., the coupled

vibration between W1 and W2 occurs). This modal interaction is specific to shell [12,14]. In order to capture
the nonlinear dynamic characteristics properly, the fundamental mode should be considered in the analysis.

The steady-state responses of the shells under the conditions (OEo2, o2Eo3) are obtained by applying the
shooting method, which is calculating not only the stable solutions but also unstable ones, to Eq. (25). The
algorithm of the shooting method is well described in Refs. [12,18].

5. Numerical results and discussion

In this section, the nonlinear dynamic behaviors of the shells with the one-to-one internal resonance
(o2Eo3) when O is near o2 are presented in the form of diagrams. Here, we treat antisymmetric angle-ply
laminated shells (y ¼ 451/�451/451/�451) which consists of graphite-epoxy layers and an isotropic shell whose
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Table 1

Frequency parameters oi of shells treated in numerical examples

y rx H o1 o2 o3

Case I 451/�451/451/�451 10 0.01 142.6 191.4 192.1

Case II 451/�451/451/�451 10 0.05 81.52 151.7 151.9

Case III 451/�451/451/�451 25 0.01 96.32 173.2 173.5

Case IV Isotropic 10 0.01 58.27 81.65 81.65

A. Abe et al. / Journal of Sound and Vibration 304 (2007) 957–968 963
Poisson’s ratio n ¼ 0.3. The material properties of graphite-epoxy composite are

EL ¼ 138GPa; ET ¼ 8:96GPa; GLT ¼ 7:1GPa; GTZ ¼ ET=2; nLT ¼ 0:3.

In the following numerical examples, the shear correction factor K2, the damping ratio m and the amplitude
F of the load are taken as K2

¼ 5/6, m ¼ 0.01 and F=o2
2 ¼ 0:01, respectively. The non-dimensional natural

frequencies oi of the shells presented in this section are listed in Table 1.
In the present analysis, the accuracy of numerical results is dependent upon the number of series (20). We

hence examine first of all convergence characteristics of steady-state responses as the number of terms I and J

of Eq. (20) increases. Fig. 2 shows a convergence study for the stable three-mode response induced by the
internal resonance (i.e., W 3a0) of the shell (Case I), where note that the maximum amplitude of W1 is
negative value [12]. It is clearly seen that the responses converge with an increase in number of the series, and
the result by using I� J ¼ 8� 8 exactly coincides with that by using I� J ¼ 10� 10. Therefore, I� J ¼ 8� 8
is adopted in the present calculations.

Frequency–response curves for the shell (Case I) is shown in Fig. 3, in which the solid and broken lines
denote stable and unstable responses, respectively. It is seen from Fig. 3 that a stable three-mode response
ðW 3a0Þ, which is activated the internal resonance, occurs at O=o2 � 1:000 via a pitchfork bifurcation, and
then the coupled response between the first and second vibration mode loses its stability. As the driving
frequency is increased from low frequency (e.g., O=o2 ¼ 0:98), the coupled response changes into a three-
mode response through the bifurcation point continuously. The coupled response, which loses its stability via
the bifurcation point, recovers its stability at O=o2 � 1:009 via a pitchfork bifurcation. There exists three
stable responses in the region given by 1.035pO/o2p1.056, one of them may generate by the initial condition.
Furthermore, there is also a stable three-mode response, which occurs via saddle-node bifurcation and loses its
stability via a Hopf bifurcation in very small region at O=o2 � 1:029.

Fig. 4 depicts the effect of radius of curvature and thickness ratio on the three-mode responses of a spherical
laminated shallow shell. Only stable three-mode responses are plotted in the figure, where solid, broken and
dotted lines denote the results for the Case I, II and III, respectively. We confirmed that the three-mode
responses occurred and vanished via the same process as shown in Fig. 3. Although there is also the three-
mode response generated via a saddle-node bifurcation, the responses omitted here because its region is very
narrow. It is found from Fig. 4 that the range of the three-mode responses becomes wider with increases of
radius of curvature and thickness ratio.

Fig. 5 presents the frequency–response curves for the spherical isotropic shell (Case IV). There exist
two stable three-mode, which occur via a pitchfork bifurcation and via a saddle-node bifurcation, in the
isotropic shell. As seen in Figs. 3 and 5, this tendency is the same as the laminated shell. However, the unstable
coupled response passing the pitchfork bifurcation point ðO=o2 � 1:000Þ does not change the stability.
Further, in the case of the isotropic shell, the range of the stable three-mode response is narrower than that of
the laminated shell.

6. Concluding remarks

Nonlinear responses of clamped laminated shallow shells with a one-to-one internal resonance between two
antisymmetric modes were investigated in the present paper. We derived nonlinear ordinary differential



ARTICLE IN PRESS

190 195 200 205 210
-0.20

-0.15

-0.10

-0.05

0.00

190 195 200
�

205 210
0.0

0.1

0.2

0.3

0.4

0.5

I × J = 4 × 4
I × J = 6 × 6
I × J = 8 × 8
I × J = 10 × 10

I × J = 4 × 4
I × J = 6 × 6
I × J = 8 × 8
I × J = 10 × 10

I × J = 4 × 4
I × J = 6 × 6
I × J = 8 × 8
I × J = 10 × 10

W
1

190 195 200 205 210
0.25

0.30

0.35

0.40

0.45

0.50

W
2

W
3

(a)

(b)

(c)

Fig. 2. Convergence characteristics of frequency–response curves for the laminated shell (Case I, W 3a0): (a) first mode, (b) second mode,

and (c) third mode.
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equations by applying Galerkin discretization approach to the equations of motion, in which the
displacements of the shells were approximated by the symmetric first vibration mode in addition to the two
asymmetric vibration modes to capture the nonlinear dynamic characteristics properly. In order to examine



ARTICLE IN PRESS

1.028
0.15

0.30

1.028 1.028

1.028

1.028

-0.10

-0.05

1.028
0.30

0.35

0.96 1.02

1.02

1.02

1.08

1.08

1.08

1.14

1.14

1.14

1.20

1.20

1.20

-0.3

-0.2

-0.1

0.0

0.96
0.0

0.2

0.4

0.6

0.8

1.0

0.96
0.0

0.2

0.4

0.6

0.8

1.0

Stable

Stable

Unstable response

Unstable response

Unstable response

W
1

W
2

W
3

Stable

�/�2

(a)

(b)

(c)

Fig. 5. Frequency–response curves for the isotropic shell (Case IV): (a) first mode, (b) second mode, and (c) third mode.
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the dynamic behaviors when a driving frequency O is near the natural frequency o2 of the second vibration
mode, the frequency–response curves were obtained by the shooting method. In numerical examples, the
influence of radius of curvature and thickness ratio on the responses activated by the internal resonance
was shown. Further, we also treated with an isotropic shell, and then the difference between isotropic and
composite shells was made clear in the form of diagrams.
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